

TP 8-1

FreeCAD 1.0.0 - 20/02/2025 - 🎲

Auteur(s) :	mél : dominique.lachiver @ lachiver.fr web : https://lachiver.fr/
	Extrait du Parcours guidé FreeCAD : version web 🌐 - version papier 🔂 -
	Réalisé avec Scenari Dokiel 😵 ;
Licence :	

Introduction

Nous allons modéliser le solide suivant (cf. TP8-1-Plan) en utilisant une feuille de calcul contenant toutes les dimensions du modèle.

Plan TP 8-1

🕂 Complément

Ce modèle sera complété au chapitre Draft P 9-3 pour devenir la 1^{ère} pièce d'un piège à guêpes et frelons.

🎸 Objectifs

- Utiliser et exploiter l'atelier Spreadsheet pour définir un modèle et récupérer des données d'un modèle ;
- Utiliser des alias d'une feuille de calcul pour saisir des contraintes dimensionnelles ;
- Récupérer des références d'un modèle dans une feuille de calcul ;

E Tâches à réaliser

• Créer un nouveau document 🕞 TP8-1 dans FreeCAD ;

1. Création de la feuille de calcul

😑 Tâches à réaliser

- Sélectionner l'atelier 🕒 Spreadsheet 🗮 et créer une nouvelle feuille de calcul 🗮 que vous renommerez 🕞 Dim ;
- Saisir les données ci-dessous dans les colonnes A & B :

	Α	В
1	Disque	
2	Diamètre	78,7 mm
3	Largeur	10 mm
4	Epaisseur	1,7 mm
5	Cône	
6	Hauteur	45,5 mm
7	Epaisseur	1,2 mm
8	Diamètre int. Inférieur	22 mm
9	Ergot	
10	Longueur ergot	5,7 mm
11	Hauteur ergot	0,95 mm

• Pour chaque cellule contenant une dimension, ajouter un alias en respectant le tableau ci-dessous :

	А	В	DicaDiam
1	Disque		Disquiain
2	Diamètre	78,70 mm	DisqLarg
3	Largeur	10,00 mm	DisqEp
4	Épaisseur	1,70 mm 🗲	
5	Cône		ConeHt
6	Hauteur totale	45,50 mm	ConeEp
7	Épaisseur	1,20 mm	ConeDiamInt
8	Petit Diametre	22,00 mm	
9	Ergot		ErgotLong
10	Longueur	5,70 mm	ErgotHaut
11	Hauteur	0,95 mm	Ergothaut
40			

Alias

• Enregistrer votre document ;

Q Pour saisir un alias :

- 1. Sélectionner la cellule ;
- 2. En haut à droite, saisir le nom de l'alias ;
- 3. Valider à l'aide de la touche 📼 Entrée ;

Le fond de la cellule doit se colorer.

2. 1^{ère} esquisse & révolution

😑 Tâches à réaliser

- Sélectionner l'atelier Part Design, créer un nouveau corps of et une nouvelle esquisse dans le plan XZ ;
- Créer l'esquisse ci-dessous à l'aide d'une polyligne 🜍 et saisir les contraintes via les alias de la feuille de calcul :

Esquisse du cône

Créer une révolution si autour de l'axe vertical :

♀ Aide

- Les lignes inclinées (génératrices du cône) sont parallèles 💋 ;
- Pour saisir une valeur provenant de la feuille de calcul, vous pouvez :
 - soit cliquer sur le bouton f(x),
 - soit appuyer sur la touche =,

puis utiliser l' auto-complétion automatique de FreeCAD, par exemple :

- saisir Dim : FreeCAD vous propose une liste contenant <<Dim>> : Sélectionner le à l'aide des flèches du curseur ;
- puis saisir les 3 premiers caractères de l'alias par exemple 🔤 Dis : FreeCAD affiche la liste des alias qui commence par Dis : sélectionner l'alias souhaité à l'aide des flèches du curseur ;

3. Créations des Ergots

E Tâches à réaliser

.

• Sélectionner la face de dessus et créer l'esquisse ci-dessous constituée d'un rectangle I en utilisant les alias pour définir les deux contraintes dimensionnelles ;

Esquisse des ergots

• Créer une protrusion inversée et d'épaisseur l'alias DisqEp ;

	Design 👻 🦉 🧐	M - M - M - M - M	× • 1
🕸 🖿 C - {} 🔹 🖗 - 🖻 🖁		899980	- 2 🖸 🕸 🛋 🎜 🖇 🇊
Modèle 🔨 Tâches			
OK Annuler			
😢 Paramètres de protrusion	٢		
Type Dimension	-		
Longueur 1,70 mm			
Symétrique au plan			
V Inverser			
Direction Direction/arête : Normale à l'esquisse		A A	
Afficher la direction			
 ☐ Afficher la direction ✓ Longueur le long de la normale à l'esquisse 			
Afficher la direction ✓ Longueur le long de la normale à l'esquisse Angle de dépouille 0,00 °	● <u></u> ▲ 	titeur d'expression	? ×
Afficher la direction Congueur le long de la normale à l'esquisse Angle de dépouille Mettre à jour la vue	® <u>↓</u> Rés	uiteur d'expression uitat : 1,70 mm	? ×

Protrusion de l'ergot

• Créer une répétition circulaire de 6 éléments ;

4. Récupérer une dimension

Nous allons récupérer la longueur de la génératrice du cône :

😑 Tâches à réaliser

- Ajouter une seconde feuille de calcul au document 🕞 TP8-1 que vous renommerez 🖨 Calculs ;
- Ouvrir l'esquisse 🕞 Sketch utilisée pour créer la révolution ;

- Saisir en A1 : ① Longueur génératrice et en B1 la référence ① =Sketch.Constraints.ConeLong ;

Récupération de la longueur dans la feuille de calcul

Pour saisir une référence et éviter une sur-contrainte :

Il faut cocher la case référence :

Créer une référence

A Pourquoi créer une seconde feuille de calcul ?

Dans un document FreeCAD, si vous utilisez une feuille de calcul pour **définir** les propriétés géométriques d'un solide, cette feuille ne pourra pas **récupérer** des informations de ce même solide, il faut créer une seconde feuille de calcul.

5. Modification du modèle

😑 Tâches à réaliser

- Modifier une dimension dans la feuille 🕞 Feuille ;
- Vérifier que le modèle 3D est mis à jour ;
- Vérifier que la longueur de la génératrice du cône est mise à jour ;
- Dans la feuille 🕞 Calculs, récupérer le volume du modèle à l'aide de l'expression : =PolarPattern.Shape.Volume

🛆 Ne pas casser le modèle

Attention à ne pas modifier les dimensions de manière exagérée sous peine de casser le modèle...

TP 8-1 Capture vidéo

6. Capture vidéo

