

08 - ATELIER SPREADSHEET

FreeCAD 1.0.0 - 20/02/2025 - 🏶

Auteur(s) :	mél : dominique.lachiver @ lachiver.fr web : https://lachiver.fr/
	Extrait du Parcours guidé FreeCAD : version web 🌐 - version papier 🔂 -
	Réalisé avec Scenari Dokiel 😵 ;
Licence :	

Table des matières

Introduction	4
1. TP 8-1 🖤 🗐	6
1.1. Création de la feuille de calcul	7
1.2. 1 ^{ère} esquisse & révolution	9
1.3. Créations des Ergots	11
1.4. Récupérer une dimension	13
1.5. Modification du modèle	15
1.6. Capture vidéo	15
Glossaire	16

Introduction

Atelier Spreadsheet

\simeq Atelier Tableur

Permet de créer et d'éditer des feuilles de calcul dans un document FreeCAD. Il sera alors possible :

• d'utiliser des données de la feuille de calcul pour définir un modèle : lorsque les valeurs sont modifiées dans la feuille de calcul, le modèle sera mis à jour ;

ou bien

• de compléter la feuille de calcul avec des données extraites d'un modèle, de réaliser des calculs et d'exporter ces données vers d'autres applications (LibreOffice Calc, Microsoft Excel...) ;

TTP: 1 ErgeCAD 100								_
Fichian Édition Affichage Outile Macro Spreadsheet (Fanâtrar Aida							
		🕅 i 🖄 - 🕅	. 🗠 . 🌫					
E Spreadsneet •		yaa I 🔕 - 🖾						
🏽 🇳 🛅 🕑 - {} 📰 📰 🔛 🗟 📰 🖽			A A I 🗞	Noir	Blanc			
Modèle Tâches	Contenu : =78.7 mm						Alias : Dis	qDiam
Modele D X	А	В	с	D	E	F	G	н
A Dim	1 Disque			Cellule B	22			
Fouillo do calcul	2 Diamètre	78,70 mm	-					
	3 Largeur	10,00 r Dis	qDiam		Alias de la	cellule		
	4 Épaisseur	1,70 mm						
	5 Cône							
	6 Hauteur totale	45,50 mm						
-	7 Épaisseur	1,20 mm						
1	8 Petit Diametre	22,00 mm						
	9 Ergot							
	10 Longueur	5,70 mm						
	11 Hauteur	0,95 mm						
	12							
	13							
	14							
	**							

Feuille de calcul

Contenu des cellules

- Une cellule peut contenir du texte arbitraire, un nombre ou une expression qui doit commencer par un signe égal '='.
- Les expressions peuvent contenir des nombres, des fonctions, des références à d'autres cellules et des références à des propriétés du modèle ;
- Le séparateur décimal est toujours un point. Mais les virgules peuvent également être utilisées lors de la saisie des valeurs.

♀ Alias

Les cellules sont référencées par leur colonne (lettre CAPITALE) et leur rangée (nombre), par exemple exemple B2 mais il est possible de définir un **alias** pour une cellule qui pourra être utilisé dans les formules de cellule et aussi dans les expressions générales ;

🛆 Unités

Le tableur intègre une notion de dimension (unités) associée aux valeurs de cellule. Un nombre entré sans unité associée n'a pas de dimension. L'unité doit être entrée immédiatement après la valeur numérique, sans espace intermédiaire.

cf https://wiki.freecadweb.org/Spreadsheet_Workbench/fr

1. TP 8-1 💎 🗏

Nous allons modéliser le solide suivant (cf. TP8-1-Plan) en utilisant une feuille de calcul contenant toutes les dimensions du modèle.

Plan TP 8-1

Complément

Ce modèle sera complété au chapitre Draft P 9-3 pour devenir la 1^{ère} pièce d'un piège à guêpes et frelons.

🎸 Objectifs

- Utiliser et exploiter l'atelier Spreadsheet 🗮 pour définir un modèle et récupérer des données d'un modèle;
- Utiliser des alias d'une feuille de calcul pour saisir des contraintes dimensionnelles ;
- Récupérer des références d'un modèle dans une feuille de calcul ; •

😑 Tâches à réaliser

• Créer un nouveau document 🕞 TP8-1 dans FreeCAD ;

1.1. Création de la feuille de calcul

E Tâches à réaliser

- Sélectionner l'atelier 🔁 Spreadsheet 🗮 et créer une nouvelle feuille de calcul 🗮 que vous renommerez 🕞 Dim ;
- Saisir les données ci-dessous dans les colonnes A & B :

	Α	В
1	Disque	
2	Diamètre	78,7 mm
3	Largeur	10 mm
4	Epaisseur	1,7 mm
5	Cône	
6	Hauteur	45,5 mm
7	Epaisseur	1,2 mm
8	Diamètre int. Inférieur	22 mm
9	Ergot	
10	Longueur ergot	5,7 mm
11	Hauteur ergot	0,95 mm

• Pour chaque cellule contenant une dimension, ajouter un alias en respectant le tableau ci-dessous :

	А	В	DicaDiam
1	Disque		Disquiain
2	Diamètre	78,70 mm	DisqLarg
3	Largeur	10,00 mm	DisqEp
4	Épaisseur	1,70 mm 🗲	
5	Cône		ConeHt
6	Hauteur totale	45,50 mm	ConeEp
7	Épaisseur	1,20 mm	ConeDiamInt
8	Petit Diametre	22,00 mm	
9	Ergot		ErgotLong
10	Longueur	5,70 mm	ErgotHaut
11	Hauteur	0,95 mm	Ligotidut
40		Alias	

• Enregistrer votre document ;

Q Pour saisir un alias :

- 1. Sélectionner la cellule ;
- 2. En haut à droite, saisir le nom de l'alias ;
- 3. Valider à l'aide de la touche 📼 Entrée ;
 - Le fond de la cellule doit se colorer.

1.2. 1^{ère} esquisse & révolution

E Tâches à réaliser

- Sélectionner l'atelier Part Design, créer un nouveau corps of et une nouvelle esquisse of dans le plan XZ ;
- Créer l'esquisse ci-dessous à l'aide d'une polyligne 🜍 et saisir les contraintes via les alias de la feuille de calcul :

Esquisse du cône

• Créer une révolution 💭 autour de l'axe vertical :

♀ Aide

- Les lignes inclinées (génératrices du cône) sont parallèles *//*;
- Pour saisir une valeur provenant de la feuille de calcul, vous pouvez :
 - soit cliquer sur le bouton f(x),
 - soit appuyer sur la touche =,

puis utiliser l' auto-complétion automatique de FreeCAD, par exemple :

- saisir Dim : FreeCAD vous propose une liste contenant <<Dim>> : Sélectionner le à l'aide des flèches du curseur ;
- puis saisir les 3 premiers caractères de l'alias par exemple 🔤 Dis : FreeCAD affiche la liste des alias qui commence par Dis : sélectionner l'alias souhaité à l'aide des flèches du curseur ;

1.3. Créations des Ergots

😑 Tâches à réaliser

• Sélectionner la face de dessus et créer l'esquisse ci-dessous constituée d'un rectangle I en utilisant les alias pour définir les deux contraintes dimensionnelles ;

Esquisse des ergots

• Créer une protrusion inversée et d'épaisseur l'alias DisqEp ;

	≪, ≪, CD + № Ø + CD + ≪, + ∰ M.
🕸 🛅 C - {} 🛛 🌢 🗗 - 🔂 🛓 🖤 4	♪◇- S ≫ A ∅ & D+ Ø 🕅 Ø A ∅ Ø A
odèle 🔪 Tâches 🗖	Ð
OK Annuler	
Paramètres de protrusion	
Type Dimension ✓ Longueur 1,70 mm ♥★ Symétrique au plan ✓ Inverser	
Direction/arête : Normale à l'esquisse ▼ Afficher la direction ✓ Longueur le long de la normale à l'esquisse	
	📝 Hiteur d'expression ? 🗙
Angle de dépouille 0,00 ° ⁽⁶⁾ ×	

Protrusion de l'ergot

• Créer une répétition circulaire de 6 éléments ;

1.4. Récupérer une dimension

Nous allons récupérer la longueur de la génératrice du cône :

😑 Tâches à réaliser

- Ajouter une seconde feuille de calcul au document 🕞 TP8-1 que vous renommerez 🕞 Calculs ; ٠
- Ouvrir l'esquisse 🕞 Sketch utilisée pour créer la révolution ; •
- Sélectionner la ligne correspondant à la génératrice extérieure du cône et créer une référence que • vous nommerez 🛈 ConeLong à l'aide d'une contrainte 📌 ;

- Afficher la feuille 🕞 Calculs ;
- Saisir en A1 : ① Longueur génératrice et en B1 la référence ① =Sketch.Constraints.ConeLong ;

08 - Atelier Spreadsheet TP 8-1

Récupération de la longueur dans la feuille de calcul

Pour saisir une référence et éviter une sur-contrainte :

A Pourquoi créer une seconde feuille de calcul ?

Dans un document FreeCAD, si vous utilisez une feuille de calcul pour définir les propriétés géométriques d'un solide, cette feuille ne pourra pas récupérer des informations de ce même solide, il faut créer une seconde feuille de calcul.

😑 Tâches à réaliser

- Modifier une dimension dans la feuille 🕞 Feuille ;
- Vérifier que le modèle 3D est mis à jour ;
- Vérifier que la longueur de la génératrice du cône est mise à jour ;
- Dans la feuille 🕞 Calculs, récupérer le volume du modèle à l'aide de l'expression : =PolarPattern.Shape.Volume

🛆 Ne pas casser le modèle

Attention à ne pas modifier les dimensions de manière exagérée sous peine de casser le modèle...

1.6. Capture vidéo

Glossaire

Glossaire

Atelier Spreadsheet ~ Atelier Tableur

Permet de créer et d'éditer des feuilles de calcul dans un document FreeCAD. Il sera alors possible :

• d'utiliser des données de la feuille de calcul pour définir un modèle : lorsque les valeurs sont modifiées dans la feuille de calcul, le modèle sera mis à jour ;

ou bien

• de compléter la feuille de calcul avec des données extraites d'un modèle, de réaliser des calculs et d'exporter ces données vers d'autres applications (LibreOffice Calc, Microsoft Excel...) ;